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1 DMotivations

One additional motivation for our work is that using Internet photo collections
of nature scenes for training generative models potentially leads to better results
than using current posed video datasets. In particular, we trained StyleGAN2-
ADA [6] models on both the LHQ (photo collection) and ACID (posed video
frames) datasets, and show randomly sampled results from both models in
Figure [} One can see that generated samples from the model trained on the
Internet photos which constitute LHQ are more realistic and diverse than ones
sampled from the ACID video—trained model, suggesting the potential use of
Internet photos for improving 3D generative view synthesis of nature scenes.

2 Inaccuracy from mono-depth and camera poses

In the original Infinite Nature paper [§], the authors render target viewpoints
using Structure from Motion (SfM)-aligned disparity and the corresponding
SfM camera poses during both training and evaluation. However, we found
that, despite imagery being rendered from the ground truth camera pose, pixel
misalignment between the ground truth and rendered images can still occur
due to a number of factors, including inaccurate camera pose estimates and
monocular depth outputs. In Fig. [2] we show a histogram of normalized disparity
error between the SfM sparse point clouds and the SfM-aligned mono-depth over
different video clips. We found that there are 25.3% of video clips whose median
disparity error is more than 0.75, a threshold we found often indicates inaccurate
camera poses or mono-depth via manual inspection of SfM reconstruction or depth
maps. In contrast, our approach, which runs training and inference on single-view
photos, and evaluates at run-time against 3D Photo—generated pseudo-ground
truth, will yield results that are not influenced by such inconsistencies between
ground truth camera poses, monocular depth, and rendered imagery.

3 Self-supervised view synthesis

To sample virtual camera viewpoints for self-supervised view synthesis task,
we sample relative camera rotations and translation within specified range. In
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Fig. 1: Comparisons StyleGAN2-ADA sampled results from the LHQ
and ACID datasets. We show random samples generated by StyleGAN2 models
trained on the LHQ (top row) and ACID (bottom row) datasets. The generated
samples from the LHQ-trained model are more realistic compared to those of the
ACID-trained model.

particular, we uniformly sample z component of translation vector in [0, 10], and
uniformly sample x, y components of translation vector in [0, 5]. We parameterize
the camera rotation as look at direction, in which we uniformly the horizontal
and vertical components within the viewing cone corresponding to 0.05 of image
width and height.

To aid refinement network learn to fill in contents in the missing regions
(e.g. near disocculusions) after rendering stage, we compute a binary mask M;
by applying thresholding to the gradient magnitude of the disparity warped
through a virtual relative camera pose. In particular, we set mask to be zero
where the gradient magnitude of the disparity is larger than «, where we sample
a € [0.35,0.5] during training, and set & = 0.4 during inference.

4 Adversarial perpetual view generation

We adopt the auto-pilot algorithm from Liu et al. [§] during both training and
inference when generating a long camera trajectory from an input RGBD image,
in order to avoid the camera crashing into the ground or mountains, or diverging
off towards the sky. In particular, at each step, the auto-pilot algorithm determines
the yaw and pitch angles of the subsequent relative camera pose by examining
the proportion of sky pixels in the current generated view, and determines the
vertical component of translation based on the proportion of nearby pixels in the
current generated view. Specifically, it empirically defines sky regions as pixels
whose disparity value is less than 0.08 and near regions as pixels whose disparity
value is larger than 0.4. The auto-pilot algorithm will (1) turn camera to the left
or right, such that it moves towards a view having balanced sky regions, (2) turn
camera up or down, such that the view has a 7y, fraction of sky regions, (3)
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Fig. 2: Disparity alignment error histogram from SfM on the ACID
dataset. The vertical axis indicates number of video clips, and horizontal axis
indicates normalized disparity error between SfM sparse point clouds and SfM-
aligned mono-depth.

translate camera up or down, such that the view observes 7yc,, fraction of nearby
regions. To ensure a smooth camera trajectory, we compute the next camera pose
by interpolating between the next desired relative camera pose and a moving
average of previous camera poses. We refer readers to Infinite Nature for more
details [§]. During training, we randomly perturb the threshold values of the
near-pixel fraction Thear € [0.2,0.4] and the sky-pixel fraction 7q, € [0.25,0.45]]
for generating different camera trajectories from an input image. During inference,
we set Tnear = 0.25 and Ty, = 0.1. Furthermore, since imagery in LHQ has
unknown camera intrinsics, during training we randomly sample the field of view
(FoV) of the input image between 45 degrees and 70 degrees, and set the FoV to
55 degrees during testing.

5 Global sky correction

Recall from Section 3.3 of the main manuscript that we compute soft sky masks
based on semantic segmentation and disparity maps to perform global sky
correction during inference. In particular, we first create a sky mask for the
starting view, by identifying pixels whose semantic label is “sky” or “clouds”
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Fig. 3: Expanded input images and detected sky regions. We expand input
images through GAN inversion to create a canvas with a larger FoV as shown in
the first row, where regions within the boxes are the original input view. We then
identify sky region of the starting view based on both estimated sky segmentation
and disparity maps. These sky masks are shown in the second row.

from a semantic segmentation method [2], and whose corresponding disparity
value is also less than 0.08. We then compute a adaptive maximum sky disparity
threshold Bgy, from the 90th percentile of determined sky regions from the
input disparity. During view generation, we create a candidate sky mask for the
current generated view by thresholding the corresponding refined disparity map
by this threshold Bgky. The candidate sky mask for current generated view is then
multiplied by the homography-warped sky mask from the starting view (warped
according to the camera rotation’s effect on the plane at infinity) to produce a
final sky mask for the current generated view. We finally create a soft version of
the determined sky mask by applying a Gaussian blur, the using alpha blending
to composite the homography-warped sky contents at starting view with the
foreground contents at the current view using the soft mask.

In addition, we expand the input image through GAN inversion [43] to
seamlessly create a canvas of higher resolution and field of view, in order to avoid
unnecessarily outpainting sky pixels from the same viewing ray during inference.
We show expanded canvases of input views and corresponding sky regions in

Fig. 3

6 Details of experiment setup

Network details. We adopt a variant of the conditional StyleGAN model,
CoMod-GAN [I3], as our backbone refinement module Fy, as described in the
main manuscript. In particular, this model consists of a global encoder F,, a multi-
scale feature extractor Ey, and a StyleGAN generator G. We encode the input
RGBD image (1, Dy) through E; to produce a global latent code zop = Eg(Io, Dy).
At every render-refine-repeat step, we feed rendered RGBD images from the
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previous viewpoint to the feature extractor Ef to produce multi-scale features,
which will then be added to the corresponding features layers of G, via a skip
connection. The induct basis from skip connections guarantees our predictions
preserve structural information of input images. The intermediate features of the
generator G are then modulated by a feature vector consisting of a concatenation
of global latent code zy and a latent code z mapped from a random Gaussian
noise through a MLP. We adopt the same StyleGAN2 discriminator architecture
for our discriminator, global encoder and multi-scale feature extractor. Formally,
we define the generation process at each step as follows:

(I;, D) =G (Ef(fu[)t), 20 @ z) (1)
where 2y = E4(lo, Do), (2)
z=MLP(n), n~N(0,I) (3)

Super-resolution module. To enable high-resolution synthesis results for
higher quality results, we train an extra super-resolution module Fgr on top
of our refinement model Fy, where the inputs of Fgr are generated views at
128 x 128, and the outputs are high-resolution ones at 512 x 512. Note that
directly training on high-resolution imagery would be extremely computational
expensive. For instance, it would take at estimated 20 days to train a model at
resolution of 512 x 512 using 8 A100 GPUs. Instead, we observe that training an
extra super-resolution model only takes one extra day and that the produced
results do not suffer significant temporal inconsistency. Interestingly, while we
do not have paired high-resolution ground truth sequences, we can still apply
the same idea as described in the main manuscript to learn super-resolution. In
particular, we perform the same self-supervised view synthesis and adversarial
view generation strategies described in the Section 3.1 and Section 3.2 of main
manuscript, where we apply a reconstruction loss between a ground truth high-
resolution image and predicted high-resolution images in the self-supervised view
synthesis stage, and apply a adversarial loss between the starting real image and
generated view at the last camera viewpoint along a virtual camera trajectory.
Additionally, to encourage high-resolution predictions to be structurally consis-
tent with low-resolution inputs, we add an extra reconstruction loss that enforces
the downsampled versions of predicted high-resolution images are consistent
with low-resolution ones generated from Fp. In summary, our loss for training
super-resolution module is as follows:

LFor = L1804 N Lree,  LP7 = LIS 4 XL, (4)
where Efgf and LPs® are non-saturated GAN losses [5] applied to the predictions
and corresponding real images at starting view; L. is a VGG perceptual loss that
encourages generated views to be consistent with real high-resolution ground truth
at self-supervised view synthesis stage, and enforces downsampled predictions
to be consistent with low-resolution RGB input at adversarial perpetual view
generation stage. We set A\; = 1 throughout all of experiments, and set weight of
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discriminator gradient penalty term Ay = 9.6 and Ao = 0.15 for the LHQ and
ACID datasets, respectively.

We use the same Co-Mod GAN architecture for super-resolution module, where
we co-modulate the intermediate features of super-resolution module through the
same latent codes zg and z obtained from the low-resolution refinement network.
We do not apply dual discrimination technique as shown in recent Style-NeRF
paper [1], since we observe it always leads to GAN training divergence for nature
scenes.

More implementation details. We use softmax splatting [9] to perform 3D
point cloud rendering with estimated disparity map, where warped pixels reaching
the same location will be weighted according to their corresponding normalized
depth values, and we perform SF(3) transformation to adjust the warped disparity
value at the target viewpoint accordingly. We train all our models using Adam
optimizer [7] with initial learning rate 1 x 1072 and perform linear decay until
we reach learning rate of 1 x 10~%. During training, when we apply adversarial
loss between prediction at last camera viewpoint ¢r and corresponding starting
real image, we detach the gradient back-propagation from prediction at cp to
prediction at cr_1, which we observe lead to more stable and efficient training.
For fair comparisons, all the methods use depth from MiDas-V2 [10] for training
and inference. When we evaluate different baselines, for real and generated images
whose aspect ratio and resolution are different, we perform central crops followed
by resizing into 128 x 128 so that outputs of all methods are evaluated under the
same settings.

During both training and inference stages, we filter out images that are not
suitable for creating 3D fly-through video using estimated disparity maps. In
particular, we filter out input images whose minimum raw disparity value is
larger than 200, since we observe that such images usually correspond to images
looking down to the grounds, close-up, or images having incorrect disparity, which
causes camera quickly crash into obstacles after a few steps. We use pretrained
StyleGAN2 generator to generate test images on the LHQ dataset, and use
original real images for inference on the ACID dataset.

3D Photo—generated pseudo-ground truth. On both LHQ and ACID test-
sets, we create pseudo ground truth images over a camera trajectory of length 5
using the technique of 3D Photos [11]. Specifically, we build a global mesh repre-
sented as layer depth images (LDI) from each training images, we then render
5 target views using autopilot algorithms from the the same LDI mesh. This
process guarantees global consistency of generated views with proper contents
inpainted at missing regions. We finally perform anti-alias downsampling to each
rendered view to a resolution of 128 x 128 to mitigate blurriness and rendering
artifacts. In Figure[d we show examples of input image and corresponding pseudo
ground truth images over 5 steps.

Image based rendering. To ensure that we are able to have smooth videos
with high frame rate, following Infinite Nature, we perform depth-aware image
based rendering to synthesize images at intermediate viewpoints from the two
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Fig.4: 3D Photo pseudo ground truths. We generate pseudo ground truth
images from 3D Photo algorithm along a camera trajectory of length 5. From left
to right, we show input images and corresponding rendered views over 5 steps
from constructed global LDI meshes.

nearby views predicted by our models along the camera trajectory. Note that
we only apply this technique in our long trajectory demo in the supplementary
video for the purpose of better visualization, and do not apply it at all in all our
evaluation.

Running time. At inference stage, our method takes 0.037 second/step to
generate a novel view at resolution 512 x 512 using a single A100 GPU, which
demonstrates potential of our approach in real-time applications.

7 Additional results

Perpetual view generation from different camera motions. Our method
can also be trained to generate long camera trajectories with different camera
motions such as moving backward or panning from a starting image. We show
perpetual view generation results of backward and panning motions over 500
steps in Fig.

Results from DIGAN. In Fig. [6] we show results from ACID-trained DI-
GAN [12], a state-of-the-art video generation model, over 100 steps. Note that
DIGAN does not have ability for explicit viewpoint control, and is only able
to generate sequences within limited viewpoints, or completely fail to produce
plausible views.

Plots of style consistency and FIDy,,. We show the plots of style consistency
error and sliding window FID (FIDgy,) over 50 steps on the two datasets, as
shown in Figure [7] On the LHQ dataset, we show comparisons between ours
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Fig. 5: Perpetual view generation results from different camera motions.
Our model can also be trained with different motion patterns to generate plausible
views over long camera trajectories. The top two rows show results generated from
backward camera motions. The bottom two rows show results generated from
left and right panning, respectively. All the results are generated over camera
trajectories length of 500.

(full) and the naive baseline as described in the main manuscript. On the ACID
dataset, we show comparisons between our approach and Infinite Nature. Figure[7]
show that our approach has better style consistency, and generated views are
more realistic and diverse over time.

8 Limitations

Unseen camera motions. Since our method was trained using auto-pilot
algorithms, our method can fail to generate plausible views from an unseen
camera trajectory such as pure rotations, a similar issue which was also observed
by original Infinite Nature work.

Motion planning. Although auto-pilot algorithms are effective most of time,
Due to its heuristic natures, we observe it can still lead to camera crashing into
obstacles over a long camera trajectory, as shown in the first row of Figure[§] This
is due to the fact that approaching speed of generated contents can be faster than
camera turning speed determined by the auto-pilot algorithms. Designing a better
learning based motion planning algorithms for controlling camera viewpoints
during long term generation process is an interesting future direction.

Inputs. Inaccurate mono-depth estimate can cause inaccurate depth of sky
as well as inaccurate sky identification. This issue is mainly manifested in the
images at sunset or night times that are barely seen by mono-depth or semantic
segmentation networks. As a result, this can generate unrealistic view sequences,
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Fig. 6: Results from DIGAN. We show results of unconditional video genera-
tion method DIGAN [12] over 100 steps. Note that DIGAN does not have camera
viewpoint control and can only produce video sequence within limited viewpoint
changes.

Fig. 7: Comparisons of style loss and FIDg, over 50 steps. From left to
right, we show (a) style loss comparisons between ours (full) and naive baselines on
the LHQ dataset, (b) style loss comparisons between ours and Infinite Nature [§],
on the ACID dataset, (¢) FIDg, comparisons between ours (full) and naive
baseline on the LHQ dataset, (d) FIDg, comparisons between ours and Infinite
Nature [§] on the ACID dataset.

as shown in the second row of Fig. [8] where part of sun turns into foreground
objects during view generation.

Global consistency. Similar to prior video and view generation methods, our
method only keeps global consistency of background, but does not ensure global
consistency of foreground contents. Addressing this issue requires designing a
generative model that enables synthesizing entire 3D models of nature landscapes,
which is beyond the scope of this work and capability of current state-of-the-art.
However, we believe this challenge is an exciting future directions to pursue.
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Fig.8: Limitations from motion planning and inputs. Auto-pilot algo-
rithms sometimes cannot avoid camera crashing into mountains, lands or obsta-
cles (left). Furthermore, generated views can be less realistic if mono-depth or
sky segmentation maps from input image is inaccurate (right). We show failure
examples generated over 500 steps.
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