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Abstract. We present a method for learning to generate unbounded
flythrough videos of natural scenes starting from a single view, where
this capability is learned from a collection of single photographs, without
requiring camera poses or even multiple views of each scene. To achieve
this, we propose a novel self-supervised view generation training paradigm,
where we sample and rendering virtual camera trajectories, including
cyclic ones, allowing our model to learn stable view generation from
a collection of single views. At test time, despite never seeing a video
during training, our approach can take a single image and generate long
camera trajectories comprised of hundreds of new views with realistic and
diverse contents. We compare our approach with recent state-of-the-art
supervised view generation methods that require posed multi-view videos
and demonstrate superior performance and synthesis quality.

1 Introduction

There are millions of photos of natural landscapes on the Internet, capturing
breathtaking scenery across the world. Recent advances in vision and graphics
have led to the ability to turn such images into compelling 3D photos [38,69,30].
However, most prior work can only extrapolate scene content within a limited
range of views corresponding to a small head movement. What if, instead, we
could step into the picture and fly through the scene like a bird and explore
the 3D world, where diverse elements like mountain, lakes, and forests emerge
naturally as we move? This challenging new task was recently proposed by Liu et
al. [43], who called it perpetual view generation: given a single RGB image, the
goal is to synthesize a video depicting a scene captured from a moving camera
with an arbitrary long camera trajectory. Methods that tackle this problem can
have applications in content creation and virtual reality.

However, perceptual view generation is an extremely challenging problem: as
the camera travels through the world, the model needs to fill in unseen missing
regions in a harmonious manner, and must add new details as new scene content
approaches the camera, all the while maintaining photo-realism and diversity.
Liu et al. [43] proposed a supervised solution that generates sequences of views
in an auto-regressive manner. In order to train the model, Liu et al. (which we
will refer to as Infinite Nature), require a large dataset of posed video clips of
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Fig. 1: Learning perpetual view generation from single images. Given a
single RGB image input, our approach generates novel views corresponding to a
continuous long camera trajectory, without ever seeing a video during training.

nature scenes to supervise their model. In essence, perpetual view generation is a
video synthesis task, but the requirement of posed video makes data collection a
big challenge. Obtaining large amounts of diverse, high-quality, and long videos
of nature scenes is challenging enough, let alone estimating accurate camera
poses on these videos at scale. In contrast, Internet photos of nature landscapes
are much easier to collect and have spurred many research problems such as
panorama generation [73,42], image extrapolation [10,62], image editing [56], and
multi-model image synthesis [17,29].

How can we use existing single-image datasets for the 3D view generation
task? In other words, can we learn view generation by simply observing many
photos, without requiring video or camera poses? Training with less powerful
supervision would seemingly make this already challenging synthesis task even
more challenging. And doing so is not a straightforward application of prior
methods. For instance, prior single-image view synthesis methods either require
posed multi-view data [86,60,36], or can only extrapolate within a limited range
of viewpoints [38,69,30,28]. Other methods for video synthesis [1,78,91,40] require
videos spanning multiple views as training data, and can only generate a limited
number of novel frames with no ability to control camera motion at runtime.

In this work, we present a novel method for learning perpetual view generation
from only a collection of single photos, without requiring multiple views of each
scene or camera information. Despite using much less information, our approach
improves upon the visual quality of prior methods that require multi-view data.
We do so by utilizing virtual camera trajectories and computing losses that
enable high-quality perpetual view generation results. Specifically, we introduce
a self-supervised view synthesis strategy via cyclic virtual camera trajectory,
which provides the network signals for learning to generate a single step of
view-synthesis without multi-view data. In addition, to learn to generate a long
sequence of novel views, we employ an adversarial perpetual view generation
training technique, encouraging views along a long virtual camera trajectory to
be realistic and generation to be stable. The only requirement for our approach
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is an off-the-shelf monocular depth network to obtain disparity for the initial
frame, but this depth network does not need to be trained on our data. In this
sense, our method is self-supervised, leveraging underlying pixel statistics from
single-image collections. Because we train with no video data whatsoever, we call
our approach InfiniteNature-Zero.

We show that naively training our model based on prior video/view generation
methods leads to training divergence or mode collapse. We therefore introduce
balanced GAN sampling and progressive trajectory growing strategies that
stabilize model training. In addition, to prevent artifacts and drift during inference,
we propose a global sky correction technique that yields more consistent and
realistic synthesis results along long camera trajectories.

We evaluate our method on two public nature scene datasets, and compare
with recent supervised video synthesis and view generation methods. We demon-
strate superior performance compared to state-of-the-art baselines trained on
multi-view collections, even though our model only requires single-view photos
during training. To our knowledge, our work is the first to tackle unbounded
3D view generation for natural scenes trained on 2D image collections, and
believe this capability will enable new methods for generative 3D synthesis that
leverage more limited supervision. We encourage viewing the supplemental video
for animated comparisons.

2 Related Work

Image extrapolation. An inspiring early approach to infinite view extrapolation
was proposed by Kaneva et al. [32]. That method continually retrieves, transforms,
and blends imagery to create an infinite 2D landscape. We revisit this idea in the
3D context, which requires inpainting, i.e., filling missing content within an image
[25,89,90,44,94], as well as outpainting, extending the image and inferring unseen
content outside the image boundaries [84,87,74,4,60,62] in order to generate the
novel view. Super-resolution [21,39] is also an important aspect of perpetual
view generation, as approaching a distant object requires synthesizing additional
high-resolution detail. Image-specific GAN methods demonstrate super-resolution
of textures and natural images as a form of image extrapolation [96,72,66,71].
In contrast to the above methods that address these problems individually, our
methods handles all three sub-problems jointly.

Generative view synthesis. View synthesis is the problem of generating novel
views of a scene from existing views. Many view synthesis methods require multiple
views of a scene as input [41,7,95,49,19,11,47,59,50,83,45], though recent work
also can generate novel views from a single image [9,77,55,76,68,86,31,70,37,61].
These methods often require multi-view posed datasets such as RealEstate10k [95].
However, empowered by advances in neural rendering, recent work shows that one
can unconditionally generate 3D scene representations like neural radiance fields
for 3D-aware image synthesis [63,53,16,52,23,5]. Many of these methods only
require unstructured 2D images for training. When GAN inversion is possible,
these methods can also be used for single-image view synthesis, although they
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have only been demonstrated on specific object categories like faces [6,5]. All of
the work mentioned above allows for a limited range of output viewpoints. In
contrast, our method can generate new views perpetually given a single input
image. Most related to our work is Liu et al. [43], which also performs perpetual
view generation. However, Liu et al. require posed videos during training. Our
method can be trained with unstructured 2D images, and also experimentally
achieves better view generation diversity and quality.

Video synthesis. Our problem is also related to the problem of video synthe-
sis [13,75], which can be roughly divided into the three categories: 1) uncondi-
tional video generation [78,51,20,46], which generates a video sequence given
input random variables; 2) video prediction [81,82,85,80,27,40], which generates
a video sequence from one or more initial observations; and 3) video-to-video
synthesis, which maps a video from a source domain to a target domain. Most
video prediction methods focus on generating videos of dynamic objects under a
static camera [81,18,82,15,88,92,40], e.g., human motion [3] or the movement of
robot arms [18]. In contrast, we focus on generating new views of static nature
scenes with a moving camera. Several video prediction methods can also simulate
moving cameras [14,79,1,40], but unlike our approach, they require long video
sequences for training, do not reason about the underlying 3D scene geometry,
and do not allow for explicit control over camera viewpoint. More recently, Koh
et al. [36] propose a method to navigate and synthesize indoor environments
with controllable camera motion. However, they require ground truth RGBD
panoramas as supervision and can only generate novel frames up to 6 steps. Many
prior methods in this vein also require 3D input, such as voxel grids [24] or dense
point clouds [48], whereas we require only a single RGB image.

3 Learning view generation from single-image collections

We formulate the task of perpetual view generation as follows: given an starting
RGB image I0, generate an image sequence (Î1, Î2, ..., Ît, ...) corresponding to an
arbitrary camera trajectory (c1, c2, ..., ct, ...) starting from I0, where the camera
viewpoints ct can be specified either algorithmically or via user input.

The prior Infinite Nature method tackles this problem by decomposing it
into three phases: render, refine and repeat [43]. Given an RGBD image
(Ît−1, D̂t−1) at camera ct−1, the render phase renders a new view (Ĩt, D̃t) at ct
by transforming and warping (Ît−1, D̂t−1) using a differentiable 3D renderer W.
This yields a warped view (Ĩt, D̃t) = W

(
(It−1, Dt−1), T tt−1

)
, where T tt−1 is an

SE(3) transformation from ct−1 to ct. In the refine phase, the warped RGBD
image (Ĩt, D̃t) is fed into a refinement network Fθ to fill in missing content and
add details: (Ît, D̂t) = Fθ(Ĩt, D̃t). The refined outputs (Ît, D̂t) are then treated as
a starting view for the next iteration of the repeat step, from which the process
can be repeated. We refer readers to the original work for more details [43].

To supervise the view generation model, Infinite Nature trains on video clips
of natural scenes, where each video frame has camera pose dervied from structure
from motion (SfM) [95]. During training, it randomly chooses one frame in a
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Fig. 2: Self-supervised view generation via virtual cameras. Given a start-
ing RGBD image (I0, D0) at viewpoint c0, our training procedure samples two
virtual camera trajectories: 1) a cycle to and back from a single virtual view
(orange paths), creating a self-supervised view synthesis signal enforced by the
reconstruction loss Lrec. 2) a path of virtual cameras for which we generate cor-
responding images via render-refine-repeat process (black path). An adversarial
loss Ladv between the final view (ÎT , D̂T ) and the real image (I0, D0) enables
the network to learn long-range view generation.

video clip as the starting view I0, and performs the render-refine-repeat process
along the provided SfM camera trajectory. At a camera viewpoint ct along the
trajectory, a reconstruction loss and an adversarial loss are computed between
the image predicted by the network (Ît, D̂t) and the corresponding real RGBD
frame (It, Dt). However, obtaining long nature videos with accurate camera poses
is difficult due to potential distant or non-Lambertian contents of landscapes
(e.g., sea, mountain, and sky). In contrast, our method does not require videos
at all, whether with camera poses or not.

We show that 2D photo collections alone provide sufficient supervision signals
to learn perceptual view generation, given an off-the-shelf monocular depth pre-
diction network. Our key idea is to sample and render virtual camera trajectories
starting from the training image, using the refined depth to warp to the next view.
In particular, we generate two kinds of camera trajectories, illustrated in Fig. 2:
First, we generate cyclic camera trajectories that start and end at the training im-
age, from which the image needs to be reconstructed in a self-supervised manner
(Sec. 3.1). This self-supervision trains our network to learn geometry-aware view
refinement during view generation. Second, we synthesize longer virtual camera
trajectories from which we compute an adversarial loss Ladv on the rendered
image (Sec. 3.2). This signal trains our network to learn stable view generation
for long camera trajectories. The rest of this section describes the two training
signals in detail, as well as a sky correction component (Sec. 3.3) that prevents
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Fig. 3: Self-supervised view synthesis. From a real RGBD image (I0, D0), we
synthesize an input (Ĩ0, D̃0) to a refinement model by cycle-rendering through a
virtual viewpoint. From left to right: input image; input rendered to a virtual
“previous” view; virtual view rendered back to the starting viewpoint; final image
(Î0, D̂0) refined with refinement network Fθ, trained to match the starting image.

drift in sky regions during test-time, yielding more realistic and stable long-range
trajectories for nature scenes.

3.1 Self-supervised view synthesis

In Infinite Nature’s supervised learning framework, a reconstruction loss is applied
between predicted and corresponding real RGBD images to train the network to
learn to refine the inputs rendered from a previous viewpoint. Note that unlike
the task of free-form image inpainting [94], this next-view supervision provides
crucial signals for the network to learn to add suitable details and to fill in
missing regions around disocclusions using background context, while preserving
3D perspective—in other words, we can’t fully simulate the necessary signal
using standard inpainting supervision. Instead, our idea is to treat the known
real image as the held-out “next” view, and simulate a rendered image input
from a virtual “previous” viewpoint. We implement this idea in an elegant way
by rendering a cyclic virtual camera trajectory starting and ending at the known
input training view, then comparing the final rendered image at the end of the
cycle to the known ground truth input view. In practice, we find that a cycle
including just one other virtual view (i.e., warping to a sampled viewpoint, then
rendering back to the input viewpoint) is sufficient. Fig. 3 shows an example
sequence of views produced in such a cyclic rendering step.

In particular, we first estimate the depth D0 from a real image I0 using the
off-the-shelf mono-depth network [57]. We randomly sample a nearby viewpoint
with a relative camera pose T within a set of maximum values for each camera
parameter. We then synthesize the view at virtual pose T by rendering (I0, D0) to
a new image (I ′0, D

′
0) =W ((I0, D0), T ). Next, to encourage the network to learn

to fill in missing background contents at disocclusions, we create a per-pixel binary
mask M ′0 derived from the rendered disparity D′0 at the virtual viewpoint [43,30].
Lastly, we render this virtual view with mask (I ′0, D

′
0,M

′
0) back to the starting

viewpoint with T−1: (Ĩ0, D̃0, M̃0) = W
(
(I ′0, D

′
0,M

′
0), T−1

)
where the rendered

mask is element-wise multiplied with the rendered RGBD image. Intuitively, this
strategy constructs inputs whose pixel statistics, including blurriness and missing
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content, are similar to those produced by warping one view forward to a next
viewpoint, forming naturalistic input to view refinement.

The cycle-rendered images (Ĩ0, D̃0) are then fed into the refinement network
Fθ, whose outputs (Î0, D̂0) = Fθ(Ĩ0, D̃0) are compared to the original RGBD
image (I0, D0) to yield a reconstruction loss Lrec. Because this method does not
require actual multiple views or SfM camera poses, we can generate an effectively
infinite set of virtual camera motions during training. Because the target view
is always an input training view we seek to reconstruct, this approach can be
thought of as a self-supervised way of training view synthesis.

3.2 Adversarial perpetual view generation

Although the insight above enables the network to learn to refine a rendered
image, directly applying such a network iteratively during inference over multiple
steps quickly degenerates (see third row of Fig. 4). As observed by prior work [43],
we must train a synthesis model through multiple recurrently-generated camera
viewpoints in order for learned view generation to be stable. Therefore, in
addition to the self-supervised training in Sec. 3.1, we also train on longer virtual
camera trajectories. In particular, during training, for a given input RGBD image
(I0, D0), we randomly sample a virtual camera trajectory (c1, c2, ..., cT ) starting
from (I0, D0) by iteratively performing render-refine-repeat T times, yielding
a sequence of generated views (Î1, Î2, ..., ÎT ). To avoid the camera flying into
out-of-distribution viewpoints (e.g., crashing into mountains or water) we adopt
the auto-pilot algorithm from [43] to sample the camera path. The auto-pilot
algorithm determines the pose of the next view based on the proportion of sky
and foreground elements as determined by the estimated disparity map at the
current viewpoint (see supplemental material for more details). Next, we discuss
how we train our model using such sampled virtual camera trajectories.

Balanced GAN sampling. We now have a generated sequence of views along
a virtual camera trajectory from the input image, but we do not have the ground
truth sequence corresponding to these views. How can we train the model without
such ground truth? We find that it is sufficient to compute an adversarial loss
that trains a discriminator to distinguish between real images and the synthesized
“fake” images along the virtual camera path. One straightforward implementation
of this idea is to treat all T predictions {Ît, D̂t}Tt=1, along the virtual path as
fake samples, and sample T real images randomly from the dataset. However,
this strategy leads to unstable training, because there is a significant discrepancy
in pixel statistics between the generated view sequence and the set of sampled
real photos: a generated sequence along a camera trajectory has frames with
similar content with smoothly changing viewpoints, whereas randomly sampled
real images from the dataset exhibit completely different content and viewpoints.
This vast difference in the distribution of images that the discriminator observes
leads to unstable training in conditional GAN settings [24]. To address this issue,
we propose a simple but effective technique to stabilize the training. Specifically,
for a generated sequence, we only feed the discriminator the generated image
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(ÎT , D̂T ) at the last camera cT as the fake sample, and use its corresponding
input image (I0, D0) at the starting view as the real sample, as shown in Fig. 2.
In this case, the real and fake sample in each batch will exhibit similar content
and viewpoint variations. Further, during each training iteration, we randomly
sample the length of virtual camera trajectory T between 1 and a predefined
maximum length Tmax, so that the prediction at any viewpoint and step will be
sufficiently trained.

Progressive trajectory growing. We observe that without the guidance of
ground truth sequences, the discriminator quickly gain an overwhelming advantage
over the generator at the beginning of training. Similarly to the issues explored
in prior 2D GAN works [34,33,67], it would take longer time for the network to
predict plausible views at more distant viewpoints. As a result, the discriminator
will easily distinguish real images from fake ones generated at distant views, and
offer meaningless gradients to the generator. To address this issue, we propose to
grow the length of virtual camera trajectory progressively. In particular, we begin
with self-supervised view synthesis as described in Sec. 3.1 and pretrain the model
for 200K steps. We then increase the maximum length of the virtual camera
trajectory T by 1 every 25K iterations until reaching the predefined maximum
length Tmax. This progressive growing strategy ensures that the images rendered
at a previous viewpoint ct−1 has been sufficiently initialized before being fed into
the refinement network to generate view at the next viewpoint ct.

3.3 Global sky correction

The sky is an indispensable visual element of nature scenes with unique char-
acteristics — it should change much more slowly than the foreground content,
due to the sky being at infinity. However, we found that the sky synthesized
by Infinite Nature can contain unrealistic artifacts after multiple steps. We also
found that mono-depth predictions can be inaccurate in sky regions, leading to
sky contents to quickly approach the camera in an unrealistic manner.

Therefore, at test time we devise a method to correct the sky regions of refined
RGBD images at each step by leveraging the sky content from the starting view.
In particular, we use an off-the-shelf semantic segmentation [8] and the predicted
disparity map to determine soft sky masks for the starting and for each generated
view, which we found to be effective in identifying sky pixels. We then correct
the sky texture and disparity at every step by alpha blending the homography-
warped sky content from the starting view (warped according to the camera
rotation’s effect on the plane at infinity) with the foreground content in the
current generated view. To avoid redundantly outpainting the same sky regions,
we expand the input image and disparity through GAN inversion [12,10] to
seamlessly create a canvas of higher resolution and field of view. We refer readers
to supplementary material for more details. As shown in the penultimate column
of Fig. 4, by applying global sky correction at test time, the sky regions exhibit
significantly fewer artifacts, resulting in more realistic generated views.
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I0 w/o BGS w/o repeat w/o PTG w/o SVS w/o sky Full

Fig. 4: Generated views after 50 steps with different settings. Each row
shows results for a different input image. From left to right: input view; results
without balanced GAN sampling; without adversarial perpetual view generation
strategy; without progressive trajectory growing; without self-supervised view
synthesis; without global sky correction; full approach.

3.4 Network and supervision losses

We adopt a variant of conditional StyleGAN model, CoMod-GAN [94], as the
backbone refinement module Fθ. Specifically, Fθ consists of a global encoder and
a StyleGAN generator, where encoder produces a global latent code z0 from the
input view. At each refine step, we co-modulate intermediate feature layers of the
StyleGAN generator through concatenation of z0 and a latent code z mapped
from a Gaussian noise. The training loss for generator and discriminator is:

LF = LFadv + λ1Lrec, LD = LDadv + λ2LR1
(1)

where LFadv and LDadv are non-saturated GAN losses [22], applied on the last
step of the camera trajectory and the corresponding training image. Lrec is a
reconstruction loss between real images and cycle-synthesized views described in
Sec 3.1: Lrec =

∑
l ||φl(Î0)−φl(I0)||1 + ||D̂0−D0||1, where φl is a feature outputs

at scale l from the different layer of a pretrained VGG network [64]. LR1
is a

gradient regularization term that is applied to discriminator during training [35].

4 Experiments

4.1 Datasets and baselines

We evaluate our approach on two public datasets of nature scenes: the Landscape
High Quality dataset (LHQ) [73], a collection of 90K landscapes photos collected
from the Internet, and the Aerial Coastline Imagery Dataset (ACID) [43], a video
dataset of nature scenes with SfM camera poses.

On the ACID dataset, where posed video data is available, we compare with
several state-of-the-art supervised learning methods. Our main baseline is Infinite
Nature, a recent state-of-the-art view generation method designed for natural
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View Synthesis View Generation
Method MV? PSNR↑ SSIM↑ LPIPS↓ FID ↓ FIDsw ↓ KID↓ Style↓

GFVS [61] Yes 11.3/11.9 0.68/0.69 0.33/0.34 109 117 0.87 14.6
PixelSynth [60] Yes 20.0/19.7 0.73/0.70 0.19/0.20 111 119 1.12 10.54
SLAMP [1] Yes - - - 114 138 1.91 15.2
DIGAN [91] Yes - - - 53.4 57.6 0.43 5.85
Liu et al. [43] Yes 23.0/21.1 0.83/0.74 0.14/0.18 32.4 37.2 0.22 9.37
Ours No 23.5/21.1 0.81/0.71 0.10/0.15 19.3 25.1 0.11 5.63

Table 1: Quantitative comparisons on the ACID test set. “MV?” indicates
whether a method requires (posed) multi-view data for training. We report view
synthesis results with two different GTs (shown as X/Y): sequences rendered
with 3D Photos [70] (left), and real sequences (right). KID and Style are scaled
by 10 and 105 respectively. See Sec. 4.4 for descriptions of baselines.

scenes [43]. We also compare with other recent view and video synthesis methods,
including geometry-free view synthesis [61] (GFVS) and PixelSynth [60], both of
which are based on VQ-VAE [58,17] for long-range view synthesis. Additionally,
we compare with two recent video synthesis methods, SLAMP [1] and DIGAN [91].
Following their original protocols, we train both methods with video clips of 16
frames from the ACID dataset until convergence.

For the LHQ dataset, since there is no multi-view training data and we are
unaware of prior methods that can train on single images, we show results from
our approach with different configurations, described in more detail in Sec. 4.5.

4.2 Metrics

We evaluate synthesis quality on two tasks that we refer to as short-range view
synthesis and long-range view generation. By view synthesis, we mean the ability
to render views near a source view with high fidelity, and we report standard
error metrics between predicted and ground truth views, including PSNR, SSIM
and LPIPS [93]. Since there is no multi-view data on the LHQ dataset, we create
pseudo ground truth images over a trajectory of length 5 from a global LDI
mesh [65], computed with 3D Photos [70]; we refer to the supplementary material
for more details. On the ACID dataset, we report error on real video sequences
where we use SfM-aligned depth maps to render images from each method. We
also report results from ground truth sequences created with 3D Photos, since
we observe that in real video sequences, pixel misalignments can also be caused
by factors like scene motion and errors in mono-depth and camera poses.

For the task of view generation, following previous work [43], we adopt the
Fréchet Inception Distance (FID), sliding window FID (FIDsw) of window size
ω = 20, and Kernel Inception Distance (KID) [2] to measure synthesis quality of
different approaches. We also introduce a style consistency metric that computes
an average style loss between the starting image and all the generated views
along a camera trajectory. This metric reflects how much the style of a generated
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Configurations View Synthesis View Generation
Method Lrec Ladv PTG BGS Sky PSNR↑ SSIM↑ LPIPS↓ FID ↓ FIDsw ↓ KID ↓ Style↓

Naive X X 28.0 0.87 0.07 38.1 52.1 0.25 6.36
w/o BGS X X X X 28.0 0.89 0.08 34.9 41.1 0.20 6.45
w/o PTG X X X X 28.1 0.90 0.07 35.3 42.6 0.21 6.04
w/o repeat X X 26.8 0.86 0.15 61.3 85.5 0.40 8.15
w/o SVS X X X X 26.6 0.85 0.08 23.4 30.2 0.12 6.37
w/o sky X X X X 28.3 0.90 0.07 24.8 31.3 0.11 6.43
Ours (full) X X X X X 28.4 0.91 0.06 19.4 25.8 0.09 5.91

Table 2: Ablation study on the LHQ test set. KID and Style are scaled by
10 and 105 respectively. See Sec. 4.5 for a description of each baseline.

sequence deviates from the original image; we evaluate it over a trajectory of
length 50. For FID and KID calculations, we compute real statistics from 50K
images randomly sampled from each of the dataset, and calculate fake statistics
from 70K and 100K genereated images on ACID and LHQ respectively, where
700 and 1000 test images are used as starting images evaluated over 100 steps.
Note that since SLAMP and DIGAN do not support camera viewpoint control,
we only evaluate them on view generation metrics.

4.3 Implementation details

We set the maximum camera trajectory length Tmax = 10. The weight of R1

regularization λ2 is set to 0.15 and 0.004 for LHQ and ACID datasets, respectively.
During training, we found that treating a predicted view along a long virtual
trajectory as ground truth and adding a small self-supervised view synthesis loss
over these predictions yield more stable view generation results. Therefore we set
reconstruction weight λ1 = 1 for input training image at starting viewpoint, and
λ1 = 0.05 for the predicted frame along a long camera trajectory. Following [35],
we apply lazy regularization to the discriminator gradient regularization every 16
training steps and adopt gradient clipping and exponential moving averaging to
update the parameters of refinement network. For all experiments, we train on
centrally cropped images of 128× 128 for 1.8M steps with batch size 32 using 8
NVIDIA A100 GPUs, which takes ∼6 days to converge. At each rendering stage,
we use softmax splatting [54] to 3D render images through depth. Our method
can also generate higher resolution of 512×512 views. Instead of directly training
the model at high resolution, which would take an estimated 3 weeks, we train
an extra super-resolution module that takes one day to converge using the same
self-supervised learning idea. We refer readers to the supplementary material for
more details and high-resolution results.

4.4 Quantitative comparisons

Table 1 shows quantitative comparisons between our approach and other baselines
on the ACID test set. Although the model only observes single images, our
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Fig. 5: Qualitative comparisons on the ACID test set. From left to right, we
show generated views over trajectories of length 100 on three methods: GFVS [61],
Liu et al. [43] and Ours.

approach outperforms the other baselines in view generation on all error metrics,
while achieving competitive performance on the view synthesis task. Specifically,
our approach demonstrates the best FID and KID scores, indicating better
realism and diversity of our generated views. Our method also achieves the best
style consistency, suggesting better style preservation. For the view synthesis
task, we achieve the best LPIPS over the baselines, suggesting higher perceptual
quality for our rendered images. We also obtain competitive low-level PSNR and
SSIM with the supervised learning methods from Infinite Nature on the ACID
test set, which applied explicit reconstruction loss over real sequences.

4.5 Ablation study

We perform an ablation study on the LHQ test set to analyze the effectiveness
of components in the proposed system. We ablate our system with different
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Fig. 6: Qualitative comparisons on the LHQ test set. On three starting
views, from left to right, we show generated views over trajectories of length 100
from a naive baseline and our full approach. See Sec. 4.5 for more details.

configurations: (1) a naive baseline where we apply an adversarial loss between
all the predictions along a camera trajectory and a set of randomly sampled
real photos, and apply geometry re-grounding introduced in Infinite Nature [43]
during testing (Naive); without (2) using balanced GAN sampling (w/o BGS);
(3) progressive trajectory growing (w/o PTG), (4) GAN training via long camera
trajectories (w/o repeat), (5) applying self-supervised view synthesis (w/o SVS),
and (6) employing global sky correction (w/o sky). Quantitative and qualitative
comparisons are shown in Table 2 and Fig. 4 respectively. Our full system achieves
the best view synthesis and view generation performance compared with other
alternatives. In particular, adding self-supervised view synthesis significantly
improves view synthesis performance. Training via virtual camera trajectories,
adopting introduced GAN sampling/training strategies, and applying global sky
correction all improve view generation performance by a large margin.

4.6 Qualitative comparisons

Fig. 5 shows visual comparisons between our approach, Infinite Nature [43], and
GFVS [61] on the ACID test set. GFVS quickly degenerates due to the large
distance between the input and generated viewpoints. Infinite Nature can generate
plausible views over multiple steps, but the content and style of generated views
quickly transform into an unrelated unimodal scene. Our approach, in contrast,
not only generates more consistent views with respect to starting images, but
demonstrates significantly improved synthesis quality and realism.

Fig. 6 shows visual comparisons between the naive baseline described in
Sec. 4.5 and our full approach. The generated views from the baseline quickly
deviate from realism due to ineffective training/inference strategies. In contrast,
our full approach can generate much more realistic, consistent, and diverse results
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t=0 t=50 t=100 t=200 t=250 t=300 t=400 t=500

Fig. 7: Perpetual view generation. Given a single RGB image, we show the
results of our method generating sequences of 500 realistic new views of natural
scenes without suffering significant drift. Please see video for animated results.

over long camera trajectories. For example, the views generated by our approach
cover diverse and realistic natural elements such as lakes, trees, and mountains.

4.7 Single-image perpetual view generation

Finally, we visualize our model’s ability to generate long view trajectories from
a single RGB image in Fig. 7. Although our approach only sees single images
during training, it learns to generate long sequences of 500 new views depicting
realistic natural landscapes, without suffering significant drift or degeneration.
We refer readers to the supplementary material for the full effect and results
generated from different types of camera trajectories.

5 Discussion

Limitations and future directions. Our method inherits some limitations
from prior video and view generation methods. For example, although our method
produces globally consistent backgrounds, it does not ensure global consistency
of foreground contents. Addressing this issue requires generating an entire 3D
world model, which is an exciting direction to explore. In addition, as with
Infinite Nature, our method can generate unrealistic views if the desired camera
trajectory is not seen during training such as in-place rotation. Alternative
generative methods such as VQ-VAE [58] and diffusion models [26] may provide
promising paths towards addressing this limitation.

Conclusion. We presented a method for learning perpetual view generation of
natural scenes solely from single-view photos, without requiring camera poses and
multi-view data. At test time, given a single RGB image, our approach allows
for generating hundreds of new views covering realistic natural scenes along a
long camera trajectory. We conduct extensive experiments and demonstrate the
improved performance and synthesis quality of our approach over prior supervised
approaches. We hope this work demonstrates a new step towards unbounded
generative view synthesis of nature scenes from Internet photo collections.
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